Search results for " nanofabrication"
showing 3 items of 3 documents
Well-aligned hydrothermally synthesized zinc oxide nanorods on p-GaN without a seed layer
2015
Zinc oxide nanorods have great potential for the realization of high efficiency heterostructure LEDs based on pdoped gallium nitride. In order to obtain a good confinement of the light, a well-aligned nanorod waveguiding structure is desirable. This paper reports on the fabrication of vertical zinc oxide nanorods using a solution-based growth process that does not require a seed layer. The nanorods obtained follow the crystalline growth direction of the GaN layer along the c-axis. Various results with different reagent concentrations are reported.
Laser-Fabricated Fluorescent, Ligand-Free Silicon Nanoparticles: Scale-up, Biosafety, and 3D Live Imaging of Zebrafish under Development
2022
This work rationalizes the scalable synthesis of ultrasmall, ligand-free silicon nanomaterials via liquid-phase pulsed laser ablation process using picosecond pulses at ultraviolet wavelengths. Results showed that the irradiation time drives hydrodynamic NP size. Isolated, monodisperse Si-NPs are obtained at high yield (72%) using post-treatment process. The obtained Si-NPs have an average size of 10 nm (not aggregated) and display photoemission in the green spectral range. We directly characterized the ligand-free Si-NPs in a vertebrate animal (zebrafish) and assessed their toxicity during the development. In vivo assay revealed that Si-NPs are found inside in all the early life stages of …
Nanofabrication on 2D and 3D Topography via Positive‐Tone Direct‐Write Laser Lithography
2019
Direct laser writing (DLW) lithography using two‐photon absorption is a powerful technique mostly used for fabrication of complex structures in micro‐ and nanoscale, by photopolymerizing a negative‐tone resist. In contrast, in this study it is demonstrated that DLW is also well suited for fabricating nano‐ to microscale metallic structures using lift‐off and a positive‐tone photoresist. It is shown first that versatile, fast and large area fabrication is possible on flat two‐dimensional insulating substrates, and an expression for how the line width varies with the scanning speed is derived, with excellent agreement with the experiments. Even more interestingly, a unique application for the…